July Fun

a ridgetop celebration, an orchid search, and a visit from a black bear

Two Parks and Rec hiking friends share a landmark birthday this year and decided to celebrate with a summertime party on Juneau Ridge. Some of the hikers have better legs than others, and they walked up the steep trail, while those with legs that have seen better days took the easy way up, thanks to Temsco and Coastal helicopters. On a beautiful day in July, the party gathered at the top of the trail and celebrated with lots of cookies, cake, smoked salmon, fruit, and chocolate.

We milled around, chatting and eating and enjoying the brilliant sunshine and long-distance views up and down the channel. The area at the top of the trail gets a lot of traffic because it provides several suitable spots for helicopter landings, as well as a resting place for up-coming hikers. So the end of the ridge is heavily trampled. Nevertheless, in between the rocks and rubble and tramplings, my casual survey found thirteen kinds of wildflowers in bloom. Admittedly, they were not tall or lush on this storm-ravaged and sun-parched ridge-top; they were small–but sturdy and tenacious. I particularly remember one little monkshood plant standing all of four inches tall, bearing a single perfect flower of intense purple.

Looking down from the ridge, we could see several lovely, clear ponds on the sides of the hill. I don’t know what invertebrates might live in those ponds, but two shorebirds that came to visit did not stay long…

Party over, some hikers trekked along the ridge to Granite Basin, thence to the Perseverance trail, some went down the steep side of the mountain to the trailhead, and still others floated down in the friendly helicopters.

The next day, I ventured partway up Ben Stewart on a miserable trail that is nothing but mud, rocks, and roots. Parks and Rec hikers were headed for the top, but my goal was just the beautiful valley to the north of the peaks. There was lots of cotton ‘grass’ (really a sedge), some butterworts (one of our insectivorous plants), and leatherleaf saxifrage in the meadow, bordered by stands of copperbush and small conifers. A little creek meanders across the valley floor. On other visits in previous years, the creek had attracted dippers and hermit thrushes. This time, two shorebirds sailed in, poked around a bit, and took off—rising higher and higher until disappearing over the treetops. A fuzzy photo enabled one of our local ace birders to say that these were solitary sandpipers.

A couple of days before the big party, a little group of friends strolled up Gold Ridge from the tram. Among other things, we were looking for frog orchids, which had been easily found the previous week. But this time, we found only one in bloom. Some taxonomist presumably thought that the flower looked a bit like a frog, although that takes considerable imagination. I would love to know who pollinates these small green flowers (it’s not frogs!).

On the way down from the crest of the ridge, we spotted a ptarmigan family with chicks, so we all stopped to watch. The whole family—papa, mama, and about eight chicks—puttered along down the trail nipping at bugs(?) on the vegetation. After a few minutes, the male and some of the chicks scuttled off to one side and down a bit, and we heard him ‘growl’ a few times. Meanwhile, mama and the rest of the brood leisurely took the next switchback for several yards before finally stepping off and down, presumably to bring the family back together again.

These were willow ptarmigan, the only grouse-like bird in North America in which fathers get involved with parental care. I have to wonder how it happened that only this one species evolved this behavior! This male had molted out of his reddish upper-body plumage and only traces of red remained; otherwise he was in good camouflage plumage.

Earlier in July, I walked with a friend along the bluff trail on the west side of Douglas. We spotted a young red-breasted sapsucker just over the edge of the bluff, tapping on a tree. Creeping closer to get a better look, we could see it was making sap wells in the bark of an alder. Not a very orderly array of wells, but perhaps that happens with more practice. (That’s how this woodpecker got its name, of course; it makes holes in the bark and the sap oozes out, so the sapsucker can lick it up with its brushy tongue.) I also spotted a brown creeper, hitching its way up a tree trunk, but it flitted to another tree and totally disappeared—something that brown creepers do very well..

Back at home, I had a little excitement too. I chanced to look out a downstairs window and saw a large black back trotting along under the deck. A juvenile black bear, probably recently kicked out by its mother, was prowling the neighborhood. This one stood up to sniff the bird feeders that are hung well out of reach and, tried twice to climb the corner of the house to reach the deck (a noisy process). Then it came to the window in front of my computer and left messy paw prints all over the glass as it peered in at me.

From there, it went down to the pond and scared the brood of mallards that was foraging there, crossed the creek below the pond, and headed for the campground. What fun!


extraordinary diversity and behavior

Humans have been fascinated by orchids for ages. When we think about orchids, most of us visualize the flamboyant, exuberant, gaudy floral displays produced chiefly by tropical species or by the activities of avid orchid breeders. Fair enough, but…

All that flamboyance and showiness evolved because each kind of orchid flower is very complex and adapted to particular pollinators. Most of the pollinators are insects, but a few are pollinated by hummingbirds. Each kind of flower is visited, typically, in a very specific way by its pollinating animals. Although some orchids do not require a pollinator but, rather, simply pollinate themselves, the majority set seed after the visit of a pollinating animal. Different kinds of orchids offer different rewards to pollinators, usually nectar, but sometimes special oils or fragrances. Some reward-less orchids rely on fooling visitors, by just looking like they might have a reward and so attracting naïve insects, or (most famously) by looking like a female insect and fooling the male insects into trying to copulate with the flower.

Orchids have actually gone a bit crazy. There are probably over twenty-five thousand species; taxonomists are not sure just how many there are. But there are way more orchids than all the birds and mammals in the whole world, and more orchids than any other kind of flowering plant except perhaps the aster and daisy family. Although they are most common in the tropics, orchids can be found almost everywhere except Antarctica and the very High Arctic, occupying almost any habitat, including on other plants; one even lives entirely underground.

Southeast Alaska has its share of orchids: as near as I can tell, we have about twenty-six species in nine or ten genera (genera is the plural of genus, a taxonomic unit that clusters similar species together). The numbers are a bit uncertain because taxonomists often have differing opinions on how to demarcate the species and how to cluster them. In this space, I intend to introduce each genus that’s found in Southeast, with a bit of information about its name and its biology. Most of our orchids are not as gaudy as their southern relatives, but they share some nifty adaptations with their gaudier cousins. Because I like to know how things work, I’m including information on how the flowers function, that is, how they control the visits of their pollinators—which, after all, is what orchids are famous for!.

Before I launch a discussion of our orchids, it is useful to explain a few things that apply to all or most orchids. By doing so, repetition can be avoided or at least reduced. And, by the way, in case you were wondering, the name ‘orchid’ comes from the Greek word for testicle, because the bulbous roots of some species reminded someone of male gonads.

All orchids produce huge numbers of minute, dust-like seeds that lack stored nutrients for seedling germination and growth. Therefore all seeds depend on forming associations with particular fungi (mycorrhizae) that bring in nutrients from decaying organic matter or from other plants. Finding the right mycorrhiza is a chancy business, and most seeds just die. If a seed finds the right mycorrhiza and germinates, most orchids plants eventually produce green leaves that can photosynthesize carbohydrates, and thus they can live somewhat independently. But some orchids have no greenery and are forever dependent on their mycorrhizae.

I will spare you (and me!) the fine details of the intricate arrangements of orchid flowers, which can be bewilderingly complex. But I will mention one very peculiar and mysterious thing: while an orchid flower is developing, it often (for some odd reason) rotates a hundred and eighty degrees on its axis, so what was up is now down. That is rather mysterious in itself. In one species of the genus Malaxis (at least in the European populations of a species that we have in our area), however, the rotation is a full three hundred and sixty degrees, so what was up is again up. I find this most peculiar—if the goal is to have ‘up’ be ‘up’, why rotate at all? Darwin noted this, and then, to confound all logic, saw that the ripe seed pod UNtwisted itself by three hundred and sixty degrees. Very peculiar. And all of that begs the question: Do those that twist only a hundred and eighty degrees also untwist when seed ripen?? It is all very strange!

Most orchids disperse pollen in clumps, rather than as loose collections of powdery, separated pollen grains (as in most flowers). The clumps of pollen grains are generally held together by sticky material and elastic threads, and sometimes several clumps are stuck together. The clumps are called pollinia. Although some other flowering plants (such as milkweeds) produce pollinia too, this habit is relatively unusual. When they pick up a pollinium, pollinators then carry many pollen grains at a time. This would seem to be very efficient, but actually the seed production of many orchids is limited by too-few pollinator visits.

OK, now for our Southeast orchids. I’ll start with the smallest and least conspicuous, dealing with each genus in turn, working up to some local beauties.

Listera. The genus is named for a seventeenth century English naturalist (Listera). These diminutive plants are known as twayblades, for the two broad leaves flanking the stem. There are four species in southeast, although two are rare. I have seen good numbers of two species along the rainforest trail near Bartlett Cove, and they should be quite widespread elsewhere in Southeast.

The nectar-bearing flowers are tiny, only a few millimeters across, and they are pollinated by equally miniscule insects such as dance flies, fungus gnats, or minute wasps. Darwin thoroughly studied the pollination mechanism of an English species of Listera, and ours apparently work the same way. When an insect touches a beak-like structure in the flower, a drop of very sticky liquid explodes from that structure, catching the tips of the pollinia and gumming them to the head (often the eyes) of the visiting insect. The sticky fluid hardens almost immediately, so the insect flies away with pollinia stuck on its head. After firing the sticky liquid and the pollinia, the female receptive surface (called a stigma) is exposed and ready to receive a pollinium from the next insect. When an insect bearing a pollinium on its head visits a flower whose stigma is exposed, the pollinium contacts the sticky stigma, so pollen is pulled away from the insect and pollination occurs. For all of this to happen, the beak-like structure actually moves, first to put the pollinia in position to be picked up by the exploding drop, and then to expose the stigma so another insect can deposit pollen.

frog orchid. Photo by Bob Armstrong

Coeloglossum. The genus name means ‘hollow tongue’; I have not learned the source of this name; one idea was that it derived from the spur that holds nectar, but since this is shaped like a tiny sac and is not at all tongue-like, this name is puzzling. The common name is frog orchid, but it doesn’t look like a frog (to me), so that name is also a puzzle. This is reportedly a short-lived species, able to flower during its first year above ground and seldom living more than about three years. The flowers can be pollinated by small insects of various sorts, but details of how the flower works are not available; self-pollination is possible.

I’ve seen frog orchids on Gold Ridge, where they are not common. Although they can apparently produce many greenish flowers on each stem, the ones I’ve seen have all had only a few flowers on each short stem. These plants on Gold Ridge are at risk by being trampled by the many visitors that walk above the tram.

Malaxis. Once known as Hammarbya, the newer name of Malaxis comes from a Greek word meaning soft or softening, referring to the soft leaves of some species. The common name is, sadly, adder’s mouth orchid or adder’s tongue. Someone must have thought the flower resembled the front end of a poisonous snake (it takes a very unusual imagination!). There are two species in Southeast, mostly in bogs.

The tiny (less than two millimeters) flowers are yellowish green. They have nectar and a sweet odor, which attract very small insects, such a fungus gnats. Darwin studied one of our species, which also occurs in Eurasia. He observed that a sticky drop holds the ends of the pollinia, and when an insect enters the narrow opening of the flower, it runs into that sticky drop and pulls out the pollinia (on lower, front part of its thorax) when it flies on. When the insect then enters the next narrow flower, the pollinia are pulled off, in contact with the stigma. Apparently this species does not self-pollinate but requires an insect to bring pollen from another plant of the same species, achieving cross-pollination; however, the second species in our area may often self-pollinate.

Malaxis orchids reportedly have the peculiar but useful habit of vegetative propagation by means of little bud-like structures on the leaf tips; these little structures can sprout and grow into new plants.

Dance fly in a coralroot orchid blossom. Photo by Bob Armstrong

Corallorhiza. There are two species of these coral-root orchids in Southeast. Both names describe the appearance of the roots, which are thought to look like branching corals. Both species produce fairly tall flowering stems with multiple flowers, either pink or yellow. Both lack any green pigment, so they cannot produce their own carbohydrates and are therefore dependent on their mycorrhizal associates for nutrients.

Both species are visited by small insects, including flies and wasps and bees, that can carry some pollen from plant to plant. However, most seeds are apparently produced by self-pollination, without a visit from an insect bringing pollen from another plant.

The pink-flowered species is often seen in conifer forest, but the yellow-flowered one seems to prefer more open, often deciduous woods.

Goodyera. The genus bears the name of a seventeenth –century botanist. The common name is entirely ridiculous; it is called rattlesnake plantain, although it has nothing to do with snakes of any kind nor is it a plantain. Because the leaves are sometimes mottled with white, some early pioneers may have been reminded of snakeskin and thought, by simple association, it could be used to treat snakebite. However, there aren’t many rattlers where our species lives, so the name seems doubly foolish.

One species of Goodyera grows in our forests. The flowers are white, borne on a tall spike. Each flower is first male, with mature pollen, and then female, with a sticky, receptive stigma (this sequence is called protandry, or first-male). Internal parts of the flower rearrange themselves slightly to better expose the stigma after pollen is removed. Pollination is reported to be accomplished by bumblebees, which first visit the older, female-phase flowers low on the spike, depositing any pollinia they may carry. Then the bees move up the spike, reaching the male-phase flowers and picking up pollinia, on their heads or tongues, to carry on to the next plant. Thus, seeds are typically produced by cross-pollination between different plants.

Platanthera. Photo by Pam Bergeson

Platanthera. There are at least eight species in Southeast. Some produce white, very aromatic flowers, while others make greenish flowers, but all bear the flowers on an elongated stalk. These orchids formerly were classified as species of Habenaria, from the Latin word for strap or rein (probably because one of the main flower parts is flat), hence the common name of rein orchid; an alternative name is bog orchid (although some also grow in wet forests). The current genus name seems to mean ‘flat flower’, perhaps referring to the same flower part.

Bog orchids are pollinated by a variety of insects, some mostly by moths or both moths and butterflies, others probably by bees, some by small flies and mosquitoes, and some by almost any insect of the right size and inclination. Our white, aromatic bog orchid is pollinated primarily by moths, at night, and our green bog orchid may have several possible pollinators. Certain species exhibit regional variation in the length of the nectar spur, odor of the flower, and the type of insect pollinators, even within the same species.

Platantheras present nectar in a nectar spur, which is visited by a foraging and pollinating insect, when it enters the flower in the proper way, from the front, and encounters the sexual parts. But at least some species also produce small dollops of nectar on other parts of the flower, perhaps to increase the allure of the flower to insects that subsequently enter the flower in the proper way.

The pollination mechanism is simple: the insect shoves it head into the flower, reaching into the nectar spur, and bumps into the sticky parts of the pollinia, which then attach to the eyes or tongue of the insect. Although cross-pollination is usually the norm, many of them may simply self-pollinate, if no pollinator visits them.

Piperia. Named for an American botanist, two species occur here; they are widespread but rare. They are similar to and sometimes classified with Platanthera, but sometimes they are classified in their own genus. They typically live in open woods. The flowering stem bears a number of small, green or white flowers that are reported to be aromatic especially at night, when they are pollinated by moths. A visiting moth can poke its head and tongue a short distance into the flower, and pick up pollinia on the tongue; an older flower is more open, and a visiting moth bearing pollinia can insert its head far enough to deposit pollinia on the stigma. Piperias are thought to be chiefly cross-pollinated.

Spiranthes. As the name suggests, the flowers spiral up in a tall spike. The common name is ladies’ tresses, because someone thought the inflorescence looks a bit like a woman’s braids. The white flowers are pollinated principally by long-tongued bumblebees. As in Goodyera, the flowers are typically protandrous (first male, then female), and when nectar-foraging bees work their way up the spike, from older flowers to younger ones, the last flowers they visit stick pollinia onto the bees’ tongues. As observed in detail by Darwin on a similar species, the pollinia are attached to a sticky disc, whose stickiness is activated by the bee’s tongue as it passes through the narrow opening to the pool of nectar. When the bee’s tongue is withdrawn, the pollinia are pulled out. On older flowers, the internal parts of the flower have been rearranged slightly, widening the opening where the bee inserts its head and exposing the receptive stigma. Flowers are usually out-crossed, but when there are few pollinator visits, male and female phases of each flower may overlap more, and some self-pollination may occur if a bee does visit. There is one species in Southeast. A study of our species on Vancouver Island, B. C. found that flowers received abundant bee visits and set seed accordingly, but visitation rates and seed production have not been studied here, where bee populations may be less dense.

Sparrow’s-egg orchid. Photo by Kerry Howard

Cypripedium. The genus name of ladyslippers or moccasin flowers comes from classical mythology. It refers to the foot of Aphrodite (or Venus), who was formerly called Kypris. Presumably an inventive observer imagined that the foot of a goddess of love might wear a floral slipper. We have at least one species (with white flowers), mostly in open woods in scattered locations, and two others may creep in to the northernmost part of Southeast.

Ladyslippers have no nectar, but they are often aromatic. The flower acts like a trap. When a small bee enters the pouch-like slipper, it cannot get out the same way because of the slippery sides and in-rolled margin of the pouch. So the bee has to exit through the upper part of the flower and, in so doing, it passes by the sexual parts of the flower. In general, Cypripedium pollen is very sticky and readily adheres to the crawling bee, which picks up pollen as it leaves the flower. When the bee enters and exits another ladyslipper, it encounters the female parts first, brushing off pollen on the stigma.

Some species of ladyslippers can become dormant for as long as three to five years, not showing above-ground shoots at all during that time. Prolonged dormancy can be induced by stress, perhaps from a bad growing season or the cost of making many seeds. These dormancy periods sometimes presage mortality, but in other cases, the shoots come up again and the flower blooms after its rest period.

Calypso. Photo by Bob Armstrong

Calypso. The common name of fairyslipper was no doubt inspired by its delicate and lovely shape, suitable perhaps for an ethereal, light-footed creature. The genus name comes ultimately from the Greek word for concealed and more immediately from the mythological goddess, Calypso. She was a beautiful nymph that lived in the forest. According to Homer’s Odyssey, she found Ulysses (Odysseus) when he was shipwrecked on her island, and she kept him for seven years.

The showy, pink-purple flower, usually one per stem, is said to be very aromatic, but it has no nectar. Bumblebee queens are the principal pollinators. Naïve queens (with no previous experience with this flower) visit calypsos but each queen soon learns that there are no nectar rewards to be found there, although the aroma might suggest otherwise. Such pollination by deception is characteristic of many orchids. Supposedly the queen bees learn quickly, so many calypsos are visited only once, and pollen may be removed but not deposited on another flower. Some researchers suggest that the slight variations in color and aroma that calypsos exhibit might facilitate fooling the bees into visiting more than one flower and accomplishing pollination.

The bees enter the open flower but discover no nectar and then back out. When they back up, apparently they hunch their backs and if, on the back of the thorax, they carried a pollinium from a previously visited flower, it gets brushed off on the stigma. A little farther toward the front of the flower, the backing-up bees encounter the pollinia of that flower, which in turn sticks to the back of the thorax, to be carried to another flower—unless the bee has learned its nectarless lesson. Calypso flowers may last more than eight days if not pollinated, but they wither in three or four days if pollination was successful. Apparently, fruit productions in calypso is generally poor, reflecting a low level of successful pollination.

We have one species of calypso here. I have seen it rarely, mostly in open, relatively dry areas. It is a temptation to pick Calypso flowers when one finds them, just because they are so lovely. But that seemingly simple act is likely to kill the plant, because the little, plucking tug can break the extremely delicate roots. So please don’t pick them!

There you have our orchids, and a lovely array it is. It is best not to try to transplant them, because many are delicate, and some are rare, so they should be left where they find themselves naturally. We can enjoy them in their natural places.

Thanks to Mary Stensvold and Ellen Anderson, USFS botanists, who provided helpful consultation.

Gold Ridge alpine

flower sightings and unusual birds

Gold Ridge is one of my favorite places for wandering around, checking the progress of the seasons and just seeing what I can see. On a fine but crisp day in late June, a friend and I strolled slowly up the trail, stopping frequently to look more closely.

The salmonberry crop was coming along nicely, and the alpine blueberries were loaded with flowers, at least in some spots. So, if the bumblebees do their job, there should be a nice crop of blueberries later on. These are much tastier, to my tongue, than the tall-bush blueberries at lower elevations.

We always look for a few special flowers, and this day we found two of them. The inky or glaucous gentian was presenting its intensely blue-green flowers, still closed and waiting for a sunny day when bees would be granted access. The funny little frog orchid is quite inconspicuous, being short of stature and bearing green flowers, but we finally found some. The common name of this species must have come from someone with a vivid (or twisted) imagination—the resemblance to a frog is remote at best.

Frog orchid. Photo by Bob Armstrong

The top of the ridge was a sea of narcissus anemones and buttercups, with patches of mountain-heather. We tucked into a small swale, out of the chill breeze, and settled in to watch for a while. Just sitting quietly is often a rewarding experience for a naturalist; one becomes part of the landscape, and creatures start to appear nearby.

And we had our small rewards. Some twitching stems of mountain-heather finally parted, to reveal a foraging gray-crowned rosy finch. This bird was thoroughly covering a small patch of ground, gobbling up small insects. Rosy finches nest in alpine tundra, on cliffs and barren slopes (and on recently deglaciated terrain, as found in upper Glacier Bay); they are known to nest on this ridge.

Another bird was walking on a nearby remnant snowbank, gathering a bill-full of bugs. A slender bird with a fairly long tail, the pipit’s characteristic gait is a walk, not a hop. This one filled its bill and winged off to a nest of chicks around the corner.

A sudden rustling in the low vegetation caught my attention. Some small animal scuttled very rapidly and nearly invisibly for several yards and dove into a burrow. I can only suppose that this was some kind of vole, probably a long-tailed vole. There is another species of vole (the heather vole) that occurs in alpine habitats, but it has seldom been recorded in Southeast.

Loafing around during lunch, we happened to spot two diminutive flowers that we surely would have missed while tramping up the trail. Both species were new to us. We later learned that one is called northern false asphodel, a pink-flowered relative of iris. The other was a dwarfed individual of purple sweet cicely, in the carrot family; it is normally a more sizable plant, but this mature individual was only about two inches tall.

On the way down, we heard a steady series of little barks or yips, which we did not recognize. Then we discovered a marmot perched on a boulder and looking uphill. We looked in the same direction and spotted an adult eagle sitting on a rocky outcrop. After a few minutes, the eagle spread its wings and sailed out over the rockslide where the calling marmot sat. Immediately, the marmot changed its call to the familiar alarm whistle and whistled until the eagle was out of sight. And thus we learned that marmots use different calls, for different levels of danger.

We spent several hours on the ridge, walking slowly and pausing frequently. In all that time, however, we saw no grouse or ptarmigan. No male ptarmigan showing off on rocky points, no females with broods of little chicks, none. We can only hope that this was just bad luck, not a sign that the populations up there have declined.